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ABSTRACT

The mode-matching technique is employed for computing the propagation |
constants and field distributions of an inverted strip dielectric waveguide.

ﬁ} : The results derived in this manner are further improved by using variational

formulas expressly designed for open dielectric waveguides. Illustrative
numerical results are presented and compared with experimental measurements

as well as those based on approximate methods found in the literature.

s RO

iii




s e

TABLE OF CONTENTS

INTRODUCTION « « o« o ¢ « o 2 « o & & & = '
MODE MATCHING . . «. ¢ « ¢ ¢ « o o o » o &
2.1 Modes in Regions I and IT . . . . . .
2.2 Fields Expansion and Matching . . . .
REDUCTION TO EFFECTIVE € CONCEPT . . . . .
VARIATIONAL IMPROVEMENTS . . . « « « « &
4.1 Mixed-Field Formulation . . . .
NUMERICAL RESULTS . « « « « o« o « o &

5.1 Results of Mode-Matching Calculations
5.2 Results of Variational Calculatiomns .

APPENDEX I . . » & o v« « & o & ¢ o« 0 o »

REFERENCES . < « « s o o o s & 5 o o o &

13

14

14

16

16

24

26

31




Figure

LIST OF FIGURES

Cross-section of homogeneous inverted

Plot of [H | field of the E. mode at

for x =w and X = w
Plot of luzl field of
for x = w and x = w
Plot of lzy[ field of
for x =w and X = w
Plot of |E,| field of
Xx=w and x = w+ “ %

Plot of Inyl field of

direction for x = 0.0 .

Plot of ]sy] field of

direction for y = h +

the

the

the

the

the

d +

ey

il

11

ey

11

gy

E

E

0

¥
11

Y
11

11

mode at

mode in

mode in

strip guide .
the interface
;h; ;n;erface
th; ;n;e;f;c;
;h; ;n;e;face
e

the transverse

Page

18

19

20

21

22

23




1. INTRODUCTION

Recent interest in the 30-300 GHz range, which has remained relatively
unexplored hitherto, has led to the investigation of low-loss, low-cost di-
electric waveguide designs ([1]-[4]) suitable for integrated circuit applications
in this frequency range.

In order to develop reliable designs for uniform dielectric guides,
as well as for active and passive components constructed from these waveguides,
it is extremely important to have the capability of theoretically predicting
the performance of these circuit elements and transmission media.

A search through the literature on optical and quasi-optical dielectric
waveguides reveals, however, that the progress in this direction has been
rather limited and the most commonly employed approach appears to be based
on what is called the "effective dielectric constant" method ([1]-[4]). An
alternate approach, called the "effective permeability" method,has also been
developed [5]; however, both of these techniques are based on certain approxima-
tions that are neither easily justified moralways satisfied. Furthermore, they
do not provide information on complete field distributions. Recently, an exact
formulation of the problem for dielectric image guides has been developed which is
based on the expansion of the field in each subregion of the guide cross-section
into a complete set of functions, and the consequent matching at the boundaries
[6]. The numerical results obtained from this method seem to be in good
agreement with the experimental results.

In this paper, a rather similar approach based on the mode-matching
technique [7] is used for a more complete analysis of the open, planar,
dielectric waveguide problem, specifically,an homogeneous inverted strip
guide (HIS). The method is quite general, and is useful even at optical
frequencies. In addition, a single-mode approximation of the full-wave method

presented here is found to be equivalent to employing the "effective dielectric

constant" approach.




The propagation constant obtained from the mode-matching technique
is further improved, by employing variational expressions which are modified

for the present analysis.

2. MODE MATCHING
We consider the waveguide geometry in Fig. 1,which shows the cross-
gsection of the homogeneous inverted strip guide (HIS). For simplicity of
analysis, and in cvder to define a proper eigenvalue problem, a perfect
electric conductor is placed parallel to, and at a large distance from the
ground plane. The distance b is chosen large enough to make the influence

of the conducting plane on the guide properties negligible. The guided modes

in this structure will generally have all the components of E and H fields.

Because of the symmetry of the structure with respect to the x =0 plane

(Fig. 1), symmetric (even) and antisymmetric (odd) modes can propagate in

the guide. If Ey is even (or Hy is odd), we can insert a magnetic wall at the ;
x = 0 plane, without affecting the field distribution. Similarly, if Ey is

odd (or Hy is even), we can introduce an electric wall at the x = o plane. 4
In either case, we need to consider only half of the guide cross-section. Here,

we consider onlv the Ey-symmetric case (magnetic wall at x = 0) and the righs

half of the guide cross-section. The antisymmetric case can be similarly
studied.

As shown in Fig. 1, we divide the region under consideration (right half
of the cross-section) into two subregions. The field in each region can be
expanded in terms of its eigenfunctions. Next, we match the fields at the
interface x = w and solve for the prapagation constant, as well as the field

distribution.
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Figure 1. Cross=section of homogeneous inverted strip guide.




2.1. Modes in Regions I and IT

The modes can be classified as TM or TE with respect to the y-direction |
[8]. The fields can be expressed in terms of the scalar potential functions

fe(x,y) and fh(x,y) as follows.

TM Modes:
1 32 f: (%x,y)
E =

xm e(y) ox 9y

s 32 e a
(k, - 52 fm(x.y) |

e
—jkz 3fm (x,y)

Eom = e(y) oy

(1
H_ = -wk e £5 (x,y) |
xm z 0w 4 |
H =0
ym

e
3 fm (x,y)

The potential function of the m-th TM mode is separable and can be

R R Ve

written as:




f: (x,y) = ¢: {y) cos(kxmx) (2)

and
<y <h
cos (kylm v) for 0<y
e e
- = + -h 3)
¢, (¥) a cos [ky:,_m (y-h)1 + 8 sin[kﬂ“l (y=h)] (
for h<y < (h+d)
e
Y, €08 [ky3m (h+b+d-y) ]
for (h+d) <y < (h+d+b)
in which

h)

Q
[}

cos (kylm

R
Be--— Ey—-msin(k

h)
m g1 v2m ylm
e o . 1m
E - —= X2 j h
g 3% [cos (kylm h) cos (kyzm ) e ky2m sin (kylm )

sin (ky2m d)] / cos (ky3m b)

> S S Y
kylm (El %5 = ke kz)

2 2 2o L2
ky2m (egky = kyy = k)

2¢ /2
ky3|n (€3 ky = Ry = k)

2 2
kg =w Hg€q




In Region I, el, 82’ and e3 are relative dielectric constants of the

dielectric strip, guiding layer, and air, respectively.

The eigenvalue equation for ki + ki is

(kyllel) tan (kyl h) + (ky2/€2) tan (kyzd) + (ky3/€3) tan (ky3b) =
(4)

[(kyl/el) (ky3/€3) /i (kyzlez)] tan (kyl h) tan (k.y2 d) tan (ky3b)

TE Modes:

h
Exm wh kz fm (x,y)

31 (x,y)
“ B = WMy TTEET

(5)

9" f

3 ;(x,y)

H = (k= - — fg(x,y)

zm z oy

The potential function of the m-th TE mode, fg(x,y), is also separable and

can be written as:

£ (x,y) = 00(y) sinCic) x)




and

for 0 <y<h

1
sin(kylm y)

&

oh(y) = of cos [k, (3-h)] + BF sinlk!, (y-h)] &)
forh<y<h+d

o sinlk) | (hhdtb-y)] for (hhd) <y < (irhd+b)

3
‘ in which
h i :
o sin(kylm h)
]
h _ _ ylm ‘
Bm o COS(kylmh)
y2m
h k'1m
- (] (] _yim '
o [sin(kylmh) cos(kyzmd) + o cos(kylmh)
y2m
L L
sin(ky2md)]/sin(ky3mb)
1/2
; - 2 4 e i 2
kylm (el k kxm kz)
1/2
y = 2 . i Hi Z
kyZm (62 k kxm kz)
2 b 2y L/2
' = - -
ky3m (63 k kxm kz)

i The eigenvalue equation for k;z + ki is




(l/k;l) tan(k;lh) + (l/k;z) tan(k;zd) + (l/k;3) tan(k;3b) =

This completes the discussion of the modes in Region I.
Region II can be obtained from those in Region I by simply setting € = 1, and

assuming an exponentially decaying wave in the x-direction.

[k;zl(k;l k;3)} tan(k;lh) tau(k;zd) tan(k;ab)

252, Fields Expansion and Matching

The fields in each of the two Regions I and II are first expanded in

terms of the TE and TM mode functions.

propagation constant (kz) are then obtained by matching the tangential components

The expansion coefficients and the

of the fields at the interface plane x = w.

Fields Expansion in Region I

M
E =)
m=1

M
H =)
y m=1

E =)
z m=1

cos(k__x)  ¢5(y)
(kim+k§) cos(kxmw) 2( ) m
m y
2 2 sin(k;mx) h
(kxm " kz sin(k' w) ¢m(y) Bm
Xm
cos(k__x) 365 (y)
i) st B %
2" cos(k . ey y
cos(k' x)
' Xm h
(-jwuokxm) sin(k' w) ¢m(y) Bm
Xm
sin(kxmx) -
1€y k) ose_w ) A
8

The modes in




A
m

u' sin(k!_x) 3F0(y)

*L ) e Ty e
e
e ? ot sin(kxmx) 1 8¢m(y) .
X a1 Xm cos(kxmw) e(y) dy m
M' sin(k' x)
Xm h
+m§1 (mokz) sin(k,'mw) ¢m(y) Bm
M cos(kxmx) -
By =m§1 (-weg kz) ESE?E;;ST ¢m(y) A
M cos(kl_x)  307(y)
i mzl (kxm) sin(k;mw) dy Bm 9

S, Bm's and kz in Eqs. (9) are constants to be determined.

Fields Expansion in Region II

) -ik_(x-w) 3 (y)
E =) R +Kk)e = L
Y m=1 ™ - ey) ™
N' -jk'_ (x-w)
=2 .2 xm -h
H -mzl (k! +k)e o,(v) D




N
EZ-Z
m=1

N'
+1

m=1

-jkm(x-U) l

382 (y).

(-jkz) e 20))

- -ji;n(x-w)
(-wuokx.) e

& -k (x-w)
(wegk_) e ™

-3k (xw) 330

C

ay m

=h
¢m(y) Dm

-e
¢m(y) Cm

(y)

-ji'm(x-w)

ENCD
3y LS (10)

In Eqs. (10) the barred characters are used to distinguish the values in

Region II from those in Region I, and Cm's and Dm's are constants to be

determined.
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Matching of Tangential Field Components at X = w

Required continuity of the field components Ey, Hy, Ez, and uz, as

given in Eqs. (9) and (10), across the plane x = w, leads to the following

equations:
M 6 (y) N 3 (y)
2 2y m =2 3. % :
mzl(km ) Ber A -mzl L, + &) 5y Cp =0 (11)
Yokt D ¥ o3 .1
! (el + k) & (y) B - ) (k} o+ k) 3.(y) D =0 (12)
m=1 m-l
M 302 (y) M wu k!
1 = 0_xm ; h
mzl ey 3y ta’t mzl e (kW) ¢ (y) B
N 39S (v) N -jeu k! 9
m=1 m=1 z
h
—%—k’m tan (k_w) ¢5(y) A +] +_ B
m=1 z Xm m m ol y n
<h
I - N' 33 (y)
=t o ) @ 2 p -0 s
Ill"l Z m m-l Y

Equations (11) - (14) yield an exact solution for the fields and propaga-
tion constants if M, N, M' and N are infinite. However, in practice,

one must limit these to finite numbers. As a consequence of this approximation,




W» " -
- - . e e

the field matching at the interface is not perfect and there is a residual
discontinuity of the tangential fields as one traverses the interface. We
will address this problem a littie later when we derive the variational
expressions for the propagation constants.

The following orthogonality relations can be shown to hold and are

utilized in solving Equatioms (11) - (14).

h+d+b
1 e e

of Gy %a) o) dy =0

h+d+b

/ ¢:(y) ¢:(y) dy = 0

0 for m # n (15)
h+d+b 1 . .o

() ¢m(y) ¢n(y) dy = 0

h+d+b

/ Bﬁ(y) 5:(y) dy = 0
0
Notice that no cross-orthogonality relations exist between the different
potential functions. Any two or all four of the relations in (15) can be
used in setting up a system of linear homogeneous equations. Next, we assume
an equal number of TM modes in the two Regions I and II (i.e. M = N), and
also an equal number of TE modes (i.e. M'=N'), We then multiply Equation
(11) by ¢:(y), Equation (14) by ¢:(y)/€(y), for n=1, ..., M, and Equations
(12) and (13) by ¢:(y). for n=1, ..., M'. Finally, we integrate the products
over the interval 0 < y < (h+d+b). Using the first two orthogonality relations
in (15), we obtain a system of 2(M+M') linear homogeneous equations for the
unknowns An' Cn’ for n=1, ..., M, and Bn, Dn, for n=1, ..., M'. The next

step is to solve for An's and Bn's from the set of equations generated from

12

e




(11) and (12) and then insert the results in the set of equations generated
from (13) and (14). This procedure yields a reduced system of (M#M') homo-
geneous equations for the unknowns Cn’ with n=1, ...M, and the unknowns D, with

n=l, ...M'. The zeros of the determinant of this system of equations are the

E desired eigenvalues or the propagation constants kz. Each kz relates to a

|

particular guide mode for which Cn 8, Dn's, An's and Bn's are found within

a constant multiplicative factor.

3. REDUCTION TO EFFECTIVE e CONCEPT i
It can be shown that solutions based on "effective dielectric constant"
concepts ([3], [4]) are essentially one-term approximations of the present

analysis. This is illustrated by setting M=N=1 and M'=N'=0. Then following

the steps outlined in Section 2, the following eigenvalue equation for kz is :

obtained.
g g R L
o k) [ 61 B (n)/ey)) dy
kyy tan(k,w) = k) [ GL +uhy OB 3 ] Ll
x1 7 Tz [ (6, b, (y)/E() dy
0

The quantity in the square brackets in Equation (16) can be assumed to be
approximately one. Then a comparison of Equation (16) with the eigenvalue
obtained from the "effective permittivity" approach (e.g., Equation (9) in
[4]) shows them to be identical.

Therefore, the method presented in the present work is a generaliza-
tion of the existing approaches that makes is possible to derive higher-order

approximations in a systematic manner.

13




4. VARIATIONAL IMPROVEMENTS

The mode-matching results for the propagation constants can be further
improved via the use of the variational techniques. The field distributionm is,
in general, discontinuous across the interface of the Regions I and II where
the matching takes place. This, as has already been mentioned in Section II,
is due to the approximation introduced by the use of a finite number of ™
and TE modes in the process of matching the field across the interface x = w.
The presence of such discontinuities requires that the conventional variational
formulas for obtaining the propagation constant from the approximate fields
distributions ([8], [9]) be suitably modified. Although three different
formulations (E-field, H-field, and mixed-field) of the variational problem are

possible, only the mixed-field formulation is considered here.

- Mixed-Field Formulation

Following Harrington's formulation of the problem [8], we define the
waves traveling in the +z direction in the guide as:

pan -jk_ z

" - -jk 2z
E = B (x,y) e Z = (Et B & Ez) .

(1)

-jk_ 2

= ~ -jk_ z
= §+ (x,y) e Z - (Ht * 8 Hz) e

e z
H
It can be shown that for any traveling wave solution in the +z direction,

there exists a corresponding traveling wave solution in the -z direction

given by:

14




P A +jk_ z 2 ~ +jk_ z
E- =E (x,y) e 2 = (E,-2z2E) e -
(18)
fa +ik_ z " ~ +jk_ z
ﬁ"' =H (x,y) e 2 = (-8 + 2 H) e b

Then, the mixed-field stationary formula for kz is found to be (see Appendix I)

B M+ [/ (we-f"--f:--umﬁ*'-ﬁ'+jﬁ--\7x-ﬁ++j?'vxu)ds (19)
z > > &
ZHEtXthds
in which
M-jfn.(izx-ﬁ;--é;*ﬁ;)dl (20)

The double integrations in (19) are over the cross-sectional surface of the
guide and the line integration in (20) is performed along the interface where
the field is discontinuous. The subscripts '"p" and "m" in (20) indicate
opposite sides of the discontinuity surface while n is the unit normal to

this surface directed from "m" to "p."

The expression (19) is valid when
the trial fields satisfy the boundary condition on the walls of the guide,
although they may be discontinuous across some interface c¢ in the cross-
section of the guide. If no such discontinuity exists, M, as given in (20),
becomes zero and the variational formula (19) reduces to a simpler one given
in [8].

For the geometry in Figure 1, n = X and subscripts "p" and "m", indicate

the fields at x = w+ and x = w , respectively.

15
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5. NUMERICAL RESULTS

L Results of Mode-Matching Calculations

In this section, we present some representative results based on the
analytical procedures described in Section 2. All of the results pertain to
the homogeneous inverted strip guide of Figure 1, and are computed for 79.4
GHz to coincide with the experimental measurements.

Table I shows the convergence of the results for the propagation
constant with the increase in the number of TE® and T modes retained in
the mode-matching calculations. The results obtained from the "effective
dielectric constant'" approach, which is equivalent to a single-mode approxi-
mation,and the measured values of kz are also included in the table. It should
be pointed out that although the propagation constant for the dominant mode as
computed from the "effective dielectric constant" method is quite accurate,
neither the results for the field distribution of this mode, nor the propaga-
tion constants of the higher-order modes are comparable in accuracy to those
derived from the mode-matching procedure.

Figures 2-5 compare the tangential field components of the E{l guide
mode at X = w and x = w+. The Hy and Hz fields are extremely well-matched
when 7 TE and 7 TM modes are used for the field expansion in the two regions,
0< xX< w and n > w+. However, the E field match improves only slightly as
the number of modes used is increased. The matching of E_is more difficult
since it is a continuous function of y at x = w and y = h, while a discontinuous
function of y at x = w+ and y = h. However, except for this difficulty at x = w,
the matching process for the Ey field converged rapidly at other values of x as is

evident from Figures 6 and 7. Figure 6 shows the distribution of Dv at the x=0
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TABLE I.

PROPAGATION CONSTANTS OF THE GUIDED MODES IN HOMOGENEOUS INVERTED

STRIP GUIDE (SHOWN IN FIGURE1l) AT FREQUENCY 79.4 GHz

y
R -
1 TE 3 TE 5 TE 7 TE Effective |Experiment
1™ | 3T | ST |7 e !
B, 2.97181 |2.98916 |2.98721 |2.98726 | 2.9906 | 3.0
-1 [
(mm ) |
: |
y
8 B,
i [ 1TE |3TE |STE | 7TE | Effective
! | 170 |3 |5 i@ | p
i i {
Y | 2.73411 |2.62101 |2.72954 |2.72033 l 2.75947
|
L o@D ’ | ,
! | | z l
‘7
¢ B
i i | V
; 1 |3 s 7 | Effective
' | 1™ 3™ 5T 7 ™ ; €
k, 2.36457 |2.38713 |2.39104 |2.39080 | 2.40701
(nm™ 1)
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Figure 2. Plot of IHy[ field of the E{l mode at the

interface for x =w and X = w .
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Figure 3. Plot of [Hz| field of the E{l mode at the
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Figure 4. Plot of lEy) field of the E{l mode at the

interface for x = w and x =w .
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plane. The field is seen to be extremely small at the top shield located at
y =h+d+ b, with b = 2(d+h), thus justifying our original assumption that
the perturbation introduced by the perfect electric conductor placed at the
top of the guide is negligible. Figure 7 shows the distribution of E, at the
y=h+d+ O+ plane. It is evident from this diagram that most of the energy

carried by a guided wave is confined within the strip region.

el Results of Variational Calculations

The field distributions calculated via the mode-matching method are
used in the modified variational formula for the propagation constant as
given by Equations (19) and (20) in Section 4. Some calculated values of
kz, using this mixed-field formulation, are presented in Table II and are
compared with the results obtained directly from the solution of the eigen-

value problem in the mode-matching technique.




TABLE II.

PROPAGATION CONSTANTS CALCULATED VIA VARIATIONAL METHOD.
COMPARISON IS MADE WITH MODE-MATCHING RESULTS GIVEN IN

TABLE I.
A.
gy 1TE 3TE 5TE
11 IT™ 3™ S5TM
Mixed field
formula (vari.)* 2.98871 2.98588
Mode
Matching 2.97181 2.98916 2.987208
B.
Hy 1TE 3TE 5TE
s 0 SR 1™ 3T STH
Mixed field
formula (vari.) 2.74028 2.61385
llode
Matching 2.73411 2.62101 2072033
C.
Ey 1TE 3TE STE
21 1T™ 3T™ ST
Mixed Field
formula (vari.) 2.39487 2.37895
Mode
Matching 2.36457 2.38713 2.39104

*yari. stands for variational
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APPENDIX I

In establishing the variational expression (19) in Section 4, we have
employed the reciprocity theorem as embodied in the reaction concept ([8],
[10]). The reaction between infinite traveling-wave line sources located in
the interior of a waveguide and the fields radiated by them can be defined

as follows [10]:

<a,b> = f[ lja(x,y) o Eb(x,y) + Ea(x,y) o ﬁb(x,y)] dx dy (I-1)

in which (o] =

S L s e e it e L e e e

P -jk_ z
J=J (xy) @ °

-jk_ z
K = E (an) e %

4 -jk_z
E =E (x»Y) e 5

@ ok “1k, 2
H=HG&xye ?

The double integration in (I-1l) is performed over the cross section of the

guide. In view of the definitions of +z and -z traveling waves(as given by
Harrington [8]) in Equations (17) and (18) and similar definitions for the

sources as given below !
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-jk z

= ~ ‘jk z
f J+ i (z.9) 8 ° = G, + 2 Jz) PR
-jk z = > -jk z
: R+ = (xy)e T = K, +zk) e ¥
P B +ik z e ~ +jk_z
f J =J (x,y) e B (Jt =z Jz) O
Ay~ +jk 2z 2 = +jk z
L K =K (x59) e Z . (K, + 2 Kz) ¢

(1-2)

(I-3)

Ramsey's reaction formula (I-1) for the uniform waveguides can be written

in the following equivalent forms:

-+

<a,b> = ff @ - E‘b-k""

a-'ﬂ';)dxdy

TR 0 I S
= 0 ar - E; - E; . ﬁ;) dx dy

a

e P
Ka . Hb) dx dy.

- >+
= f{ (Ja Eb -
It can be shown [8] that
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<a, a> =0 (I-5)

is a stationary formula for a trial field "a" and the associated source. For
the waveguide problem, the stationary formula for the propagation constant

is found from (I-5) using the definition of the reaction as given in (I-1)

or any of the equivalent forms given in (I-4). For instance, Harrington [8],
in effect, uses the fourth expression for the reaction in (I-4) to obtain

the variational expression for the propagation constant.

T R T LY 7 7

In this paper, we use the same expression for the reaction (fourth in
(I-4)) in the formulation of the variational expression. Starting from

Maxwell's equations, the electric and magnetic sources are found to be

: -E+ =7 x E+ + jwuﬁ+ - jkzz x E+
b
. ‘ (I-6)
, L 3+ = 7 x ﬁ+ - jqu+ - jkzz X §+
E
3 and
1
| > -— - i prean
K" =V xE + juuH + jkz xE
(I-7)
T eyx¥ jwuf- + jkzz x 0

These sources support the fields and can be used in (I-5). However, if the

fields are discontinuous along a certain interface "c" in the cross section
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of the guide, additional surface currents,as given below,are needed to support

the discontinuity.

(1-8)

(1-9)

- e S S

-Ks = n X (Ep - Em)
R -+ -+

Js = n X (Hp - Hm)

o i - .

and -Ks =qn X (Ep - Em)
—— = — —P—

Js =n X (Hp - Hm)

in which subscripts "p" and "m" refer to the opposite sides of the surface
of discontinuity and n is a unit normal directed from "m" to "p."
The variational formula (I-5) using the fourth expression of the

reaction in (I-4) is written as

<a, a> = [[ 6 i G L ) ds
. (1-10)
>~ >+
+I(Js-s-xs H)dL =0
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in which double integration is over the surface of the cross—-section of the

guide and line integration is along '"c," the line of field discontinuity
in the cross-section.

The integrand in the line integral of (I-10) is not, however,
well-defined, due to the fact that either E; or E: and also either ﬁ;
or ﬁ; can be used for E+ and H in the integrand. This is, however, clarified
by Ramsey [10], in the sense that either "m" or "p" values should be used for
both E and ﬁ and, in either case, the same result is obtained.

Taking E+ = E: and ﬁ+ = ﬁ; and substituting currents as given in

(1-6), (I-7), (I-8) and (I-9) in (I-10) and effecting some rearrangements,

we end up with the variational expression (19).
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